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PENALTY FUNCTIONS AND BOUNDED 

PHASE COORDINATE CONTROL* 
$ By D. L. Russell 

ABSTRACT L3/u.i- fL  
The use of two different kinds of penalty functions to obtain 

approximate and, in the limit, exact solutions to the bounded 

phase coordinate optimal control problem is considered. The first 

type of penalty function assumes small values within the phase 

constraint and large values outside while the second type is de- 

fined only within the phase constraints, assuming small values 

away from the constraint boundary but increasing to infinity as that 

boundary is approached. 

The bounded, or constrained phase problem is replaced by a 

new problem in which the constraints are formally removed but the 

cost functional is augmented by adding a penalty function of one of 

the above types. Solutions to this new problem are shown to exist. 

They are seen, under suitable hypotheses, to be approximations to 

the solutions of the original constrained problem in the sense that 

I 
I 

as the severity of the penalty imposed increases without limit 
, these unconstrained solutions converge, in an appropriate sense, 

to solutions of the constrained problem. + 
.......................... 
* 
$ 

Prepared under contract NASw-563 for the NASA 

Research Consultant, Minneapolis-Honeywell Regulator Company, 
Minneapolis, Minnesota 
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INTRODUCTION 

Synthesis of controllers that satisfy an optimization criterion 

and which do not force the system response trajectories beyond 

prescribed boundaries in phase space is a difficult problem that 

has not been satisfactorily resolved. 

to the problem have met with some success, it is proper to consider 

other methods. 

Although direct approaches 

Instead of trying to develop a synthesis procedure which 

determines an optimal trajectory that does not exceed the phase 

constraint, an unconstrained problem is considered wherein the 

original cost functional is augmented by a non-negative penalty 

function which sharply increases the cost associated with trajectories 

lying outside the phase constraints. By using sequences of cost 

functionals with more and more severe penalty functions, it might 

be expected that a desired constrained phase solution could be 

approximated to any desired degree of accuracy. 

This document deals only with the existence of solutions and 

with their convergence properties. Necessity, sufficiency,and 

uniqueness considerations as well as computational methods are 

subjects for later investigations. 

In the PROBIEM STATEMENT which follows, two different kinds of 

penalty functions are defined and the Optimization problem is 

posed. OPTIMIZATION WITH A PENALTY FUNCTION establishes the 

existence of at least one controller that minimizes a cost 

functional whose integrand has been modified by addition of a 

penalty function. This result is then used in the existence and 
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convergence result proved in OPTIIdIZATION WITH SEQUENCES OF 

PENALTY FUNCTIONS. Results of this document are then summarized 

in the CONCLUSIONS. 

PROBLEM S T A W T  

The optimization problem is posed and two types of penalty 

f'unctions are defined. 

THE OPTIMIZATION PROBLEM The system of differential equations 

m Gi = gi(t,x) + Z h;(t,x)uj(t) 
j=1 

or, in vector notation 

x = g(t,x) + H(t,x) u(t) (1) 

is considered. Here x and u are n and m dimens-mal vectors, 

respectively, while H is an nxm matrix.g (t,x) and h (t,x) are 

continuous and have continuous first order partial derivatives 

with respect to x in I x G. The existence is assumed of 

i i 
j 

(a) a closed constraint set GCE" possessing a non-empty 

interior, 

(b) ' a compact, convex subset O C f l  possessing at least 

two points, 
1 (c) a compact subinterval I of E with non-zero length 

( d )  a compact target subset T(t) of Int(G) varying continuously 

with t E I, and a point xo E: Int(G) such that for 

t E I, xo T(t). 

a non-empty set d o f  measurable vector functions u defined 

on various intervals [to,tl] C I such that the unique 

solutions x(t) of (1) with x(to)  = xo corresponding to 

(e) 



these u ( t )  obey 

(i) x(t , )  E T ( t &  

(ii) x ( t )  E G f o r  t E [ to , t , ] ,  

( f )  a cost  functional 

m 
C(u) = (go(t ,x) + 2 h ; ( t , x ) u j ( t ) k t  

to 3=1 

defined f o r  each u i n  

I x G .  

. Here go and ho j are continuous i n  

PROBLEM Find u E A  such t h a t  f o r  a l l  u E A, C(u) 5 C(u).  

I f  i n  ( a )  the s e t  G i s  taken t o  be En, the problem w i l l  be 

cal led unconstrained, Otherwise it w i l l  be said t h a t  the 

optimization problem i s  constrained. 
I 

A solut ion t o  t h i s  problem w i l l  be sought by use of sequence2 

of penalty functions.  
I 

DEFINITION 1. 

sequence of penalty functions of  the f i r s t  kind f o r  G i n  case: 

The sequence o f  functions {pi(x)) i s  said t o  be 2 

( a )  There i s  an open s e t  0 w i t h  G c O G E n  such t h a t  f o r  each 

i = 1 , 2  , . . .pi(  x )  i s  defined and continuous on 0 and therc  i?ssumes 

non-negative, r e a l  values. 
I 

, ( b )  Given any compact s e t  D c I n t ( G ) ,  l i r n  p,(x) = 0 uniformly 
i-> 00 

f o r  x E D .  

( c )  Given any compact s e t  DcExt(G)RO, l i m  pi(x) = + w uniformly 
i-> oo 

f o r  x E D o  

Usually the open s e t  0 will be taken t o  be En. 

DEFINITION 2 .  

sequence o f  penalty functions of t he  second kind f o r  G i n  case: 

The sequence of functions (pi(x)! i s  said t o  be a 

( a )  For each i = 1,2, ...pi( x) is  defined, continuous,and assumes 



r e a l ,  non-negative values i n  I n t ( G ) ,  

(b )  Given any compact s e t  D c I n t ( G ) ,  lim p (x) = 0 uniformly f o r  

x E D. 
i i-> 03 

1 f o r  each i = 1,2, ..., / p i ( x ( t ) ) d t  = + 0 0 .  

the  c l a s s  of n-vector valued functions on [0,1] each of  which 

Here C,[O,l] denotes 
0 

on i t s  der iva t ive .  

OPTIMIZATION WITH A PENALTY FUNCTION 

It i s  the  purpose of t h i s  document t o  study means whereby 

solut ions t o  the  constrained optimization problem may be approximated. 

It i s  thus necessary t o  begin by defining what i s  here meant by 

an approximation procedure. 

Let t h e  i n i t i a l  point xo be fixed and a (possibly)  time-varying 

t a rge t  s e t  T ( t )  be defined. Let x ( t )  and u ( t )  be defined on 

[ t o , t l ] S I  w i t h  x ( t )  t h e  response t o  the  control  u ( t )  via equation 

(I), x ( t o )  = xo and x(t,) E T ( t l ) .  Le t  x k ( t ) ,  u k ( t )  be s imi la r ly  

defined on in t e rva l s  [tok, t l k ] s I  With Xk(tok) = Xo,xk(tlk) E T ( t l k ) .  

DEFINITION 3 .  

t o  approximate the p a i r  ( u ( t ) ,  x ( t ) )  i n  case: 

( a )  l i m  tok = 

(b) For each t E (to,t,), l i m  x,(t) = x ( t ) .  (Note t h a t  

x k ( t )  i s  well defined i f  k i s  s u f f i c i e n t l y  l a r g e . )  

The p a i r s  of functions (u  ( t ) ,  x k ( t ) )  w i l l  be said 
k 

l i m  tlk = tl 
k-> 00 k-> 03 

k-> w 
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( c )  

they are previously undefined, 

Defining u ( t )  and uk ( t )  t o  be zero a t  points  t E I where 

l i m  uk = u i n  the weak topology 
k-> 00 

of L 2 ( I ) .  

An approximation procedure for ( u ( t ) , x ( t ) )  i s  any procedure 

whereby a sequence {(uk( t ) ,  x k ( t ) ) )  s a t i s fy ing  the  above requirements 

may be obtained. It w i l l  be seen below the  penalty function methods 

provide j u s t  such a procedure. 

The following lemma i s  e s s e n t i a l  t o  the method t o  be des -  

cribed. 

UMMA 1. Let the  optimization problem be defined a s  above. For 

each natural  number k l e t  uk E A  and l e t  xk be the response t o  uk 

v ia  equation (l), both functions being defined on an i n t e r v a l  

[ tok,  t , k ] c I ,  where X k ( t o k )  = Xo and X k ( t l k )  E: T ( t l k )  I S  the  f irst  

in te rsec t ion  of t h e  t raJectory $ w i t h  the  t a rge t  T ( t ) .  

t ha t  there i s  a pos i t ive  number B such t h a t  I /xk(t)  11 - < B, 

t E I t o k ,  tlk], for each k. 

pa i r s  uk, x 

properties 

Assume 

Then there i s  a subsequence o f  the 

which we continue t o  c a l l  (uk, xk}, wi th  the k’ 

( a )  l i r n  tok = to, lim tlk = tl. to,tl E I and to < tl. 
k-> 00 k-> 00 

( b )  uk converges t o  a function u E A ,  the  convergence being i n  

the weak topology o f  L 2 ( I ) .  

( c )  Letting x ( t )  denote the  response t o  u ( t )  v i a  equation ( l) ,  

l i m  xk( t )  = x ( t )  f o r  each t E ( t o , t l ) ,  where [ to , t l l  i s  the domain 
k-> OD 
of def in i t ion  of x and u, as already indicated.  T h i s  convergence 

i s  uniform i n  every closed subset of ( t o , t l ) .  

( d )  l i m  c(uk) = c ( U ) .  
k-> 03 
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PROOF: 

except for the stated uniform convergence. Since the xk and x 
obey (1) and are thereby absolutely continuous, and since IIxkli 

is uniformly bounded by hypothesis, it nay be concluded that \ 
and x are uniformly bounded. Hence the stated uniform convergence 

The proof of this lemma is due to Lee and Markus ( reference 2, 

follows from Lemma 2 which follows immediately. 

2. Let (fn(t)) be a sequence of absolutely continuous 

functions converging pointwise on the compact interval I to the 

absolutely continuous function f(t). If there exists a positive 

number B such that 

(a) If’(t>l I B  a.e., 

(b) If’,(t) I B a.e., for each n, 

then rfn(t)} converges uniformly to f(t) on I. 
, 

PROOF: Let 6 > 0 be chosen. Divide I into subintervals 11,12e..,Im 

of equal length such that m - > 4BIIJ where 111 denotes the length 

of I. 

Then no may be chosen so large that for n 

Let a point ti be selected in each subinterval Ii, i=1,2,.. .,m. 
1 no If(ti) - fn(ti)l<9, 

i=1,2, ..., m. Choose any t E I. Suppose t E I . Then let 
io 

n - > no’ 

0 I 

0 
I 

+ =*2B 6 = $ + 3 = 6 .  

Hence {fn(t)} converges uniformly t o  f(t). 

It is desired to approximate solutions to the constrained 

optimization problem To this end a new problem is considered. 
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It is identical to the old unconstrained problem with the single 

exception that the cost function C(u) is replaced by 

where p is a penalty function for the constraint set G. 

THEOREM 1, 

functional (3) is considered. p is a penalty function of the first 

A new unconstrained optimization problem with cost 

Mnd f o r  8, i.e., a member of a sequence of penalty functions of 

the first kind. This problem possesses an optimal solution u, x. 

PROOF: A proof is presented in reference 1. 

An analogous theorem for penalty functions of the second kind 

is now given. 

THEOREM 2. 

functional (3) is considered. p is a penalty function of the 

A new unconstrained optimization problem with cost 

second kind for @. It is further assumed that tke bounding 

hypothesis of Lemma 1 i s  satisfied. Then there i s  a solution 

u, x t o  this optimization problem such that y(t)  lies entirely 

in Int(G) on [to,tl]~I provided there is any u* E A whose 
response x? is known to lie entirely in Int(G) on its domain of 

definition [ t: , tl ] C I, 
PROOF: 

u E A because of the boundedness of go(t,x), ho(t,x), u(t) and the 

fact that p(x) is non-negative. 

existence of u*(t) it may be assumed that M is the largest such 
number, 

a function C(t) 

- -  

There exists a real number M such that C (u) > M f o r  all - P 

j 
Because of the hypothesized 

If A contains only finitely many functions u(t) there i s  

E A  such that Cp(U) = M. Suppose the response x(t) 



were such tha t  it net  aG. Then there would be i n  ( ~ o , ~ l )  a 

smallest time t (because x i s  bounded) such t h a t  x ( t )  E aG. 

then using the condition ( d )  imposed upon penalty functions of 

the second kind we see t h a t  I 
cannot be t h a t  C (E) = M. 

But 

tl 
p ( x ( t ) ) d t  = + 0 0 .  But then i t  

to Hence x( t )  E Int(G) f o r  
P 

It i s  supposed t h a t  A contains i n f i n i t e l y  many functions u ( t ) .  

A sequence iuk(t)} i s  selected such t h a t  

l i m  Cp(uk) = M .  
k-> 

( 4 )  

By Lemma 1, a subsequence {ukJ ( t ) 1 o f  {uk( t ) 1 converges weakly 

t o  a function u ( t )  E 1 and the  responses x 

t o  x ( t ) ,  uniformly i n  any compact subinterval of (~o,~l), where 

x ( t )  i s  the response t o  u ( t ) .  

( t )  converge pointwise 
I I ka 
I 

- 
Moreover defining Clu) by (2) ,  

l i m  C(u ) = C(c). Thus i t  remains only t o  show t h a t  
- 

R-> OD kA 

IkL 

OkL 

t 

l i m  i P ( X  ( t > > d t  = J P ( W ) ) d t .  
-e->oo t kL €0 

(5) 

F i r s t  of  a l l ,  it i s  c l e a r  from ( 4 )  t h a t  the sequence 
t 
Ik4 

OkL 

P ( X k L ( t  1 ) d t )  

i s  bounded, It i s  now claimed tha t  there  e x i s t s  a compact sub- 

s e t  DcIn t (G)  such t h a t  for each = 1,2,3, ... and each 
1 

It i s  supposed f o r  contradiction t h a t  t h i s  were not t he  case.  

Then there  i s  a sequence of  times $ such t h a t  d i s  (x  ( tL) , aG) ->O.  
k.2 
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Since the tR all lie within the compact 

sequence of them, which is s t i l l  called 

Since the x (tA) are uniformly bounded 
k a  

interval I, a sub- 

{tL}, converges to t*. 

in norm by B, a sub- 

sequence, still called x 
Because the derivatives of the x are uniformly bounded, the 

sequences 1 -taka } and (tlkd-td) are uniformly bounded away from 
zero. 

can be found such that for lk -do, 5 E [?1,~2 1 and 

(ta), converges to a point Xr, E dG. 
ka 

kA 

Thus a natural number do and a compact interval [T,,T,] 

derivatives of the x are uniformly bounded, 

lim (x (t )‘xk ;t*)) = 0 .  
, l ->mLkQ. 1 L . R->oo R 
Hence ?(t*) = x* E aG. Then by condition (d) on penalty functions 

of the second kind,  J p(x(t))dt = + 00 and hence, since p is non- 

negative 

- ka 
On the other hand, lim xk (t*) = x(t*>. 

t* 

TQ L 
J p(F(t))dt = + 0O 

(Set p (x(t)) = + 00 if x(t)  E dG). Now for all/ldo the 
?2 

integral J p(x (t))dt is defined and there is a fixed real 
Tl kL 

A 

number P > 0 such that for all such1 

A 

- Moreover, for each t E [ T ~ , T ~ ] ,  lim Hence, 

remembering that p(x(t)) may be + 00, for each t E [T1,T2 1, 
lim 

xk ( t )  = x(t). 
I->0O 4 

p(x,(t)) = p(x(t)) in view of conditions.(a) and (c) on e-> 00 
penalty functions of the second kind. 

be applied with inequality (7) to see that J ,p(x(t))dt exists and 

Hence, Fatou’s Lemma may 
? 

71 
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i s  P .  But t h i s  i s  i n  contradiction w i t h  ( 6 ) .  Therefore there  

i s  a compact s e t  DCInt  ( G )  such tha t  x 

But  p (x )  i s  bounded f o r  x E De 

convergence theorem it i s  seen t h a t  

(t) always l i e s  i n  D. 

Applying Lebesgue s dominated 
ka 

where 

i s  the cha rac t e r i s t i c  function of [ro,El]. 
( t )  is the  cha rac t e r i s t i c  function of [tokA,tlkh] and F( t )  e 

But then (8) proves 

(5) cor rec t .  Thus, it has been shown t h a t  l i m  C (u  ) = C (E) and L->m p kL P 
t h i s  completes the  proof of Theorem 2. 

OPTIMIZATION WITH SEQUENCES OF PENALTY FUNCTIONS 

It has been shown t h a t  the  optimization problem which in-  

cludes a penalty function i n  i t s  cost funct ional  integrand has 

a so lu t ion .  I n  what follows, sequences of penalty functions,  a s  

defined e a r l i e r ,  a r e  used. It is assumed t h a t  t he  optimization 

problem i s  solved f o r  each such function and now the study proceeds 

t o  study the  sequence of solut ions thus obtained. 

es tab l i shes  the existence of exact solut ions t o  the constrained 

phase coordinate optimization problem as l i m i t s  of sequences of 

such solut ions provided (u,x) i s  approximable (Defini t ion 4 )  i n  

Theorem 3 

the  i n t e r i o r  of Q .  Theorem 4 es tab l i shes  t h a t  i f  the system is 

l i n e a r ,  normal, and autonomous and if there i s  one cont ro l  t h a t  

maintains the system t r a j e c t o r i e s  within the i n t e r i o r  of a convex 

cons t ra in t  s e t ,  then (u,x) i s  approximable f r o m  the  i n t e r i o r .  

Theorem 5 proves the  existence o f  a so lu t ion  t o  t h e  general bounded 
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phase coordinate control  optimization problem by means of 

sequences of penalty functions of the  f i r s t  kind. 

a discussion of the requirement on approximability from the  

I n  addi t ion,  

i n t e r i o r  is  given. 

Consider therefore  sequences {pi(x)) of penalty functions e 

For a control u ( t )  Cpi(u) i s  defined by 
t 

For each i l e t  u i ( t )  wi th  response 

x i ( t ) ,  xi(toi)  = xo, xi( t l i )  E T ( t l i )  be  a solut ion t o  the  

unconstrained optimization problem wi th  cos t  functional Cpi(u)- 

DEFINITION 4. 

belong t o  3.  

i n t e r i o r  of G on I i f  there  e x i s t s  a sequence of i n t e rva l s  

[to + 6: tl + 5:] G I  with l i m  

of pa i r s  (uk,xk), ak E 1, x k ( t )  the response t o  

Let u ( t )  w i th  response x ( t ) ,  x ( t o )  = xo, x( t , )  E T ( t l ) ,  

The p a i r  (u ,x)  i s  sc.ld t o  be approximable i n  the  

k S k  = l i m  ei = 0 and a sequence 
k-> 03 k->a 

k k xk(t l  + el) E T ( t l  + sl), such t h a t  k u k ( t ) ,  X k ( t o  + s o )  = > z o j  

( a )  

( b )  

(u,(t)\ converges weakly t o  u ( t ) ,  

x,(t) converges pointwise t o  x ( t )  and uniformly on any 

compact subinterval of ( t o , t l )  and xk ( t )  E I n t  ( G )  f o r  
k k t E [ t o  + Go, tl + e l l .  

THEOREM 3. 

f i r s t  or second kind f o r  G o  

optimization problem wi th  cos t  funct ional  Cpi(u) f o r  each i a s  

described above. 

U ( t )  E A the  corresponding p a i r  (u ,x)  i s  approximable i n  t h e  

Let {pi(x)) be a sequence of  penalty functions of e i ther  

L e t  u i ( t ) ,  x i ( t )  be a so lu t ion  of the 

Assume llxi(t)ll e < B for each i ,  t .  I f  f o r  each 
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i n t e r i o r  of G on I,  then there  exists a subsequence Iui ( t ) )  
k '  

converging weakly t o  U ( t )  E 3 w i t h  the responses xi ( t )  converging 

pointwise t o  x(t) , uniformly on compact subintervals  of  (Fo,Fl) , 
and u( t )  and x ( t )  a r e  a solut ion of the constrained optimization 

problem with cos t  functional C(u). 

PROOF: Everything has been proved i n  Lemma 1 except the statement 

t h a t  E ( t )  and x ( t )  a r e  a so lu t ion  of the constrained optimization 

problem w i t h  cost  functional C(u). 

k 

For contradiction, it i s  supposed there  i s  a control  u ( t )  E: 1 

such t h a t  

c ( u )  = c ( U )  - c (10) 

where c i s  a pos i t ive  r e a l  number. Consider a sequence o f  pa i r s  

(a,, $A) which approximates the  pa i r  (u,x) i n  the  i n t e r i o r  of G. 

Assume t h a t  u ( t )  i s  defined on the i n t e r v a l  [to, t,] and t h a t  
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m 
C ho(t,x)uJ valid where M is a bound for the function go(t,x) + 
j=l j 

for t E I, x E G, u E 0, and JL = [to,tl] (1 [to + 6L,tl + t j l ] .  A 

Let E = c/p, where p, is a positive integer which will be 

fixed later. Let Lo be chosen so that c"'L )',=> 

Since 2 (t) converges uniformly to x(t) on any compact subinterval 

of [to,tll and go is continuous, and hence unifomly continuous 

onbt(~fi ( x ~ i i x l i < ~ l ) ,  - L~ can clesrly be chosen so that R >  - il=> 

/ 

NOW 
IT1 

j' { L (h;(t,x(t))uj(t) - hy(t,kL(t)&i(t)lldt 
J j=1 

(14) 

Again using the uniform continuity of ho together with the uniform 

convergence of the 2 .  (t) to x(t) on compact subintervals of 
[to,tl] and the boundedness of u(t)lL2 *1 can be found so that 

j 

12 e ,  => 
L- 

25.Rce A.. (t) converges weakly t o  u(t) ! 3  can be found so that I > / - >  - 3- 
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A 

Let  A= max (ijo,k?,,l!2,$1. Then f o r  - > a" 

E KO may be chosen such that k KO=> Ip (2. ( t ) )  I< 
ik ( t&to-6i)  

Then c l ea r ly  

IC(u) - C p  (Gl)l < 5~ for such k 
ik 

Set CI. = 10 and 

Ic(u) - cpi ( A ) I  < c/2 f o r  such k. 

k 

Now c lea r ly  f o r  each k 

Asproved i n  Theorem 1, 

lim C(u ) = C(u). Hence 
k->OO ik 

Combining (lo), (lg), (22) it is  clear that k 1. ko can be chosen 

so l a rge  t h a t  

But t h i s  cont rad ic t s  the choice of the con t ro l  ui . 
is impossible and the c o n t r o l G ( t )  with i t s  response z ( t )  i s  

indeed a so lu t ion  of the  constrained optimization problem. &.E .D. 

Hence (10) 
k 
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The necessity of the  condition of approximability from the  

i n t e r i o r  of G f o r  penalty functions of the  second kind i s  now 

shown by an example. Then it  w i l l  be shown t h a t  there  i s  a 

c l a s s  of problems i n  which t h i s  condition i s  f u l f i l l e d .  

Consider the l i n e a r  autonomous system . 
XI = x2 14 1 

;c2 = u 

When the Maximum Principle  of Pontrjagin i s  applied it is seen 

tha t  t he  time optimal paths a re  segments of t he  parabolas 

(X, l2  
x l = + -  - + c  

2 

as  shown i n  Fig. 1. 

Let G be the shaded region and take xo E: I n t  ( G )  a s  shown 

i n  Fig. 2 .  T = 0, the o r ig in ,  i s  the  fixed t a r g e t  s e t .  The 

optimal t r a j e c t o r y  from xo t o  T is  the  a rc  of the  parabola 
- ( x z ) 2  - between xo and 0. It i s  easily ve r i f i ed  t h a t  every x1 - 2 

solution o f  (24) for lu f  < 1 which o r ig ina t e s  a t  xo l i e s  on 

t h i s  parabola o r  i n  the  region x1 > 
not cross the  l i n e  x2 = 0. 

- +,I2 
a s  long a s  i t  does 

2 
Since a segment of the parabola 

"x,)' - forms part of the  boundary of G it i s  c l e a r  t h a t  

the optimal path from xo t o  0 cannot be approximated from the  

i n t e r i o r  of G. 

used t o  constrain solut ions t o  G t he  attempt would end i n  

f a i l u r e .  

t o  0 l y i n g  i n  I n t  ( G )  but no sequence of such t r a j e c t o r i e s  

converges t o  t he  optimal t r a j e c t o r y .  

x1 - 2 

Hence i f  penalty functions of the  second kind were 

Note t h a t ,  a s  sketched, t he re  a r e  t r a j e c t o r i e s  from xo 
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The following Lemma i s  a fami l ia r  r e su l t  from reg'erence 1. 

LEMMA 3: Consider the autonomous system 

where f ( x , u )  i s  i n  C1 i n  Rn+m. 

u ( t )  lying i n  a compact, convex subset 42 of Rm such t h a t  42 

contains the o r i g i n  i n  i ts  i n t e r i o r .  

We consider measurable controls  

af af L e t  A = =(QO), B = =(O,O) 

and assume 

( a )  f ( O , O )  = 0 .  

(b) There e x i s t s  a vector v E Rm such t h a t  Bv l i e s  

i n  no proper invar ian t  subspace. of  A.  

equivalent t o  saying tha t  Bv, ABV, A2Bv,. . . ,An-lBv 

a r e  l i n e a r l y  independent.) 

(This  i s  

Then f o r  every small negative number T there  e x i s t s  a 

neighborhood NT of x=O such t h a t  i f  xo E NT, a control  u ( t )  

may be found such that i f  x ( t )  obeys (S) with  u = u ( t )  and 

x(T) = x then x(0)  = 0. 0' 

T h i s  lemma leads t o  a theorem giving s u f f i c i e n t  conditions 

f o r  approximability from the  i n t e r i o r  f o r  a ce r t a in  c l a s s  of 

l i n e a r  autonomous control  systems. 

DEFTNITION 4. Consider the l i nea r  autonomous cont ro l  system 

x = A x + B u  

The system (25) I s  ca l led  normal If there  exists a vector  

v E R" such that Bv, ABv, . . . , An%v are l i n e a r l y  independent. 

THEOREM 4. 

the o r ig in  0 l i e  i n  the i n t e r i o r  of  G. 

[ t o , t l ]  be such that the response x ( t )  with x ( t o )  = xo has 

x(t ,)  = 0 and x ( t )  E G f o r  t E [ to , t l ] .  

Let G be a closed convex subset of Rn and l e t  xo and 

Let u ( t )  defined on 

If there  is  any control  



- u(t) defined on [to,tl] 

lies in Int (G) for t E 

from the interior of Q ,  

such that the response z(t) with X(to) = xo 

[to,tl] then the pair (u,x) is approximable 

f (1) is a normal linear system. 
1 PROOF$ 

t E [to,tll. 

For each natural number k let uk(t) = (1- E)u(t )+ E(t), 
Let xk(t) be the response to uk(t) with Xk(to) = xo. 

Now by the variation of parameters formula 

A(t-to) A(t-to) t -A(S-to) 
x(t) = e xo + e I e  Bu( s)ds 

A(t-to) A(t-to) t -A(S-to) 
Z(t) = e xo + e S e  Bc( s)ds + 

"0 

and hence 
A(t-to 1 A(t-to) t -A(S-to) 

x,(t) = e xo + e l e  B[(1- a)u(s)G u(s)]ds (27) 

1 1 -  = (1 - E) x(t) + E x(t). 

Since x(t) E Int (Ct),x(t) c Int (G) and Q is convex, xk(t) E Int (G) 

for each k and each t. Now 

lim Xk(t1) = 0. 
k-> OQ 

Using the fact that ;Lk must be bounded together with Lemma 3 it 

can be stated: 

non-negative number 6k such that uk(t) may be defined on 

[to,tl + 6 i I  in such a manner that $(tl + 6k) = 0. 

xk(t) E Int (G) for t E [to,tl + 6k], and I/Xk(t)II < Ek for 

For each sufficiently large k there exists a 

t E tl 4- 6k]e The 6k may be chosen SO that 

lim 6k = l i m  ck = 0. Since x(t) is uniformly continuous on 
k-> 00 k->m 
[to,tlI and lim xk(t) = x(t) uniformly there and since uk(t) and 

k-> 00 
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u ( t )  a r e  uniformly bounded on [ t l , t l  + e k ]  f o r  a l l  k and 

l i m  u k ( t )  = u ( t )  uniformly on [ to , t l ]  it i s  seen t h a t  the 

sequence (uk,x,) defined on the sequence of i n t e r v a l s  [ to , t l  + ek] 
k-> Oo 

approximates (u,x) from the  i n t e r i o r  of G and t h i s  completes 

the  proof. 

The author i s  confident that much more general  theorems 

concerning approximability from the i n t e r i o r  are ac tua l ly  t rue .  

The proof of t h i s  a s se r t ion  appears a t  this t i m e  t o  be qui te  

d i f f i c u l t .  

Penalty functions of the f i rs t  kind which s a t i s f y  the  

addi t ional  requirement: 

l i m  pi(x) = 0, uniformly f o r  x E 
i->oo 

a r e  now considered. A spec ia l  instance of t h i s  s i t u a t i o n  

occurs when G i s  described by 

G: {XI p(x) = 01 
where p(x) i s  a continuous, non-negative funct ion which i s  > 0 f o r  

x # G. 

sequence of penalty functions of the first Mnd which s a t i s f y  (31). 

This approach t o  the problem of minimizing f u n c t i o n a h  subject 

t o  cons t ra in ts  i s  o r ig ina l ly  due to  Courant. (See Refs. 3 ,  4 ) .  

Then one can take pi(x) = i p ( x )  , thereby obtaining a 

I n  the supplementary notes t o  Courant's 11 Calculus of  Variations" 

( R e f .  3 )  the following theorem is proved by Martin h s k a l  and 

Hanan Rubin: 

THEOREM 5 I f  

(a)  @ ( p )  and @(p)  are lower semi-continuous r e a l  valued functions 

on a convergence space S (ice., any space i n  which a notat ion of 

convergence is defined); 
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( b )  @ ( p )  - > 0 f o r  a l l  p i n  S and there  e x i s t  points  i n  S f o r  which 

+(PI  = 0; 

( c )  A denotes the problem: 

condition 

Find a point satisf 'ying the s ide  

+/(PI = 0 

a t  which @(p) takes on i t s  l e a s t  value f o r  a l l  p i n  S sa t i s fy ing  

the s ide condition; 

( d )  

takes on i t s  l e a s t  value for a l l  p i n  S; and 

( e )  

sequence {p,} of points  i n  S, and a point p, i n  S such t h a t  

tn->oo as n->oo, pn solves At 

At denotes the  problem: 

There e x i s t s  a sequence {tn) of pos i t ive  r e a l  numbers, a 

Find a point f o r  which 4(p)  + tSl/(p) 

and pn->oo a s  n->oo 'p then: 
n 

The proof of t h i s  theorem i s  not presented here.  

solves A ,  pm 
I n  order  

t o  apply it t o  the  present problem the  following i d e n t i f i c a t i o n s  

are  made: 

defined on I, u ( t )  E 42 such t h a t  x ( t )  i s  the  response t o  u ( t )  

on I and there  a re  times to, tl E I wi th  x ( t o )  = xo, x(t ,)  E T ( t l ) ,  

Ilx(t)ll L B  uniformly. 

the topology i n  L2(I) being the weak topology, and i n  C ( 1 )  the  

topology of the sup norm, 

the  convergence i n  S. 

i n t eg ra l  used i n  C(u) being taken between to,tl,tl being the 

first time x ( t )  meets T ( t )  a f t e r  time to. 

@ ( u ( t ) ,  x ( t ) )  i s  continuous with respect  t o  the  chosen topology 

of s. 

S cons is t s  of a l l  p a i r s  of functions ( u ( t ) ,  x ( t ) )  

S i s  taken a s  a subspace of L2(I) x C ( I ) ,  

Then the  product topology defines 

@ ( u ( t ) ,  x ( t ) )  i s  defined t o  be C(u),  the 

It is c l e a r  t h a t  

+ ( u ( t ) ,  x ( t ) )  i s  defined t o  be 1 ( p ( x ( t ) ) d t  0. 
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Again + i s  continuous on S since it depends only on x ( t )  and i s  

continuous i n  ~(1). 

The condition t h a t  there  a re  points i n  S f o r  which 

p ( u ( t ) ,  x ( t ) )  = 0 is precisely the condition t h a t  there  i s  a 

u ( t )  E: A such t h a t  the response x ( t )  l ies  i n  G f o r  to 1. t 5 tl. 
Then Lemma 2 may be used t o  obtain condition (e)  and the 

following theorem may be s t a t ed  as a consequence of Theorem 5. 

THEOREM 6.  

defined above. Then Theorem 3 holds f o r  t h i s  sequence of penalty 

functions without the  requirement on approximability from the 

i n t e r i o r .  

Le t  p(x) s a t i s f y  (30) and pi(x) = i p ( x ) ,  p (x)  a s  

The same r e s u l t  may be proved f o r  sequences of penalty 

functions which s a t i s f y  equation ( 2 9 ) .  

following 

THEOREM 7 .  Theorem 3 holds f o r  a sequence of penalty functions 

of the first kind which s a t i s f y  (29) without t he  condition on 

approximability from the  i n t e r i o r .  

PROOF: The proof is  the  same as tha t  i n  Theorem 3 with the 

functions ( u ~ ,  x$, being replaced by (u, x ) .  

It i s  embodied i n  the 

It i s  c l e a r  t h a t  Theorem 7 i m p l i e s  Theorem 6 but Theorem 6 

is  included t o  show the usefulness of t h e  Kruskal-Rubln 

approximation theorem, i .e., Theorem 5. 

CONCLUSION 

It has been shown t h a t  with su i tab le  hypotheses optimal 

constrained phase t r a j e c t o r i e s  may be approximated to any desired 

degree of accuracy by unconstrained so lu t ions  of problems wherein 

the  cost  has been augmented by a penalty function. 
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